Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy.
نویسندگان
چکیده
We previously reported damage and elevated biogenesis in cardiac mitochondria of a type 1 diabetic mouse model and proposed that mitochondria are one of the major targets of oxidative stress. In this study, we targeted overexpression of the mitochondrial antioxidant protein manganese superoxide dismutase (MnSOD) to the heart to protect cardiac mitochondria from oxidative damage. Transgenic hearts had a 10- to 20-fold increase in superoxide dismutase (SOD) activity, and the transgenic SOD was located in mitochondria. The transgene caused a twofold increase in cardiac catalase activity. MnSOD transgenic mice demonstrated normal cardiac morphology, contractility, and mitochondria, and their cardiomyocytes were protected from exogenous oxidants. Crossing MnSOD transgenic mice with our type 1 model tested the benefit of eliminating mitochondrial reactive oxygen species. Overexpression of MnSOD improved respiration and normalized mass in diabetic mitochondria. MnSOD also protected the morphology of diabetic hearts and completely normalized contractility in diabetic cardiomyocytes. These results showed that elevating MnSOD provided extensive protection to diabetic mitochondria and provided overall protection to the diabetic heart.
منابع مشابه
Manganese Superoxide Dismutase: Guardian of the Heart
Submit Manuscript | http://medcraveonline.com MOJ Anat Physiol 2015, 1(2): 00006 was neonatal lethal. Due to background modifications, a small percentage of knockout mice showed dilated cardiomyopathy indicating increased vulnerability to oxidative injury in the cardiac myocytes [1]. Ikegami et al. [3] successfully generated tissuespecific MnSOD conditional knockout mice that would provide a us...
متن کاملEvaluation of Cardiac Mitochondrial Function by a Nuclear Imaging Technique using Technetium-99m-MIBI Uptake Kinetics
Mitochondria play an important role in energy production for the cell. The proper function of a myocardial cell largely depends on the functional capacity of the mitochondria. Therefore it is necessary to establish a novel and reliable method for a non-invasive assessment of mitochondrial function and metabolism in humans. Although originally designed for evaluating myocardial perfusion, 99mTc...
متن کاملCatalase protects cardiomyocyte function in models of type 1 and type 2 diabetes.
Many diabetic patients suffer from a cardiomyopathy that cannot be explained by poor coronary perfusion. Reactive oxygen species (ROS) have been proposed to contribute to this cardiomyopathy. Consistent with this we found evidence for induction of the antioxidant genes for catalase in diabetic OVE26 hearts. To determine whether increased antioxidant protection could reduce diabetic cardiomyopat...
متن کاملThioredoxin 2 Offers Protection against Mitochondrial Oxidative Stress in H9c2 Cells and against Myocardial Hypertrophy Induced by Hyperglycemia
Mitochondrial oxidative stress is thought to be a key contributor towards the development of diabetic cardiomyopathy. Thioredoxin 2 (Trx2) is a mitochondrial antioxidant that, along with Trx reductase 2 (TrxR2) and peroxiredoxin 3 (Prx3), scavenges H₂O₂ and offers protection against oxidative stress. Our previous study showed that TrxR inhibitors resulted in Trx2 oxidation and increased ROS emi...
متن کاملLin28a protects against cardiac ischaemia/reperfusion injury in diabetic mice through the insulin-PI3K-mTOR pathway
The insulin-PI3K-mTOR pathway exhibits a variety of cardiovascular activities including protection against I/R injury. Lin28a enhanced glucose uptake and insulin-sensitivity via insulin-PI3K-mTOR signalling pathway. However, the role of lin28a on experimental cardiac I/R injury in diabetic mice are not well understood. Diabetic mice underwent 30 min. of ischaemia followed by 3 hrs of reperfusio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Diabetes
دوره 55 3 شماره
صفحات -
تاریخ انتشار 2006